Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Drug Deliv ; 30(1): 2164094, 2023 Dec.
Article En | MEDLINE | ID: mdl-36588399

Low bone mass, degeneration of bone tissue, and disruption of bone microarchitecture are all symptoms of the disease osteoporosis, which can decrease bone strength and increase the risk of fractures. The main objective of the current study was to use a phospholipid-based phase separation in-situ gel (PPSG) in combination with an alendronate sodium nanoemulsion (ALS-NE) to help prevent bone resorption in rats. The effect of factors such as concentrations of the ALS aqueous solution, surfactant Plurol Oleique CC 497, and Maisine CC oil on nanoemulsion characteristics such as stability index and globular size was investigated using an l-optimal coordinate exchange statistical design. Injectable PPSG with the best nanoemulsion formulation was tested for viscosity, gel strength, water absorption, and in-vitro ALS release. ALS retention in the rats' muscles was measured after 30 days. The droplet size and stability index of the optimal nanoemulsion were 90 ± 2.0 nm and 85 ± 1.9%, respectively. When mixed with water, the optimal ALS-NE-loaded PPSG became viscous and achieved 36 seconds of gel strength, which was adequate for an injectable in-situ formulation. In comparison with the ALS solution-loaded in-situ gel, the newly created optimal ALS-NE-loaded PPSG produced the sustained and regulated release of ALS; hence, a higher percentage of ALS remained in rats' muscles after 30 days. PPSG that has been loaded with an ALS-NE may therefore be a more auspicious, productive, and effective platform for osteoporosis treatment than conventional oral forms.


Osteoporosis , Animals , Rats , Alendronate , Emulsions , Osteoporosis/drug therapy , Water
2.
J Pharm Sci ; 112(2): 544-561, 2023 02.
Article En | MEDLINE | ID: mdl-36063878

Duloxetine HCl (DXH) is a psychiatric medicine employed for treating major depressive disorder. Nonetheless, its low water solubility, high first-pass metabolism, and acid instability diminish the absolute oral bioavailability to 40%, thus necessitating frequent administration. Therefore, the aim of the current study was to formulate DXH as nasal chitosan-grafted polymeric nanoparticles to improve its pharmacokinetic and pharmacodynamic properties. Applying the Box-Behnken design, DXH loaded PLGA-Chitosan nanoparticles (DXH-PLGA-CS-NPs) were fabricated and optimized using polylactide-co-glycolic acid (PLGA), chitosan (CS), and polyvinyl alcohol (PVA) as the independent factors. Particle size, entrapment efficiency, release percent, and cumulative amount permeated after 24 h of DXH-PLGA-CS-NPs (dependent variables) were evaluated. The in-vivo biodistribution and pharmacodynamic studies were done in male Wistar rats. The optimized DXH-PLGA-CS-NPs had a vesicle size of 122.11 nm and EE% of 66.95 with 77.65% release and Q24 of 555.34 (µg/cm2). Ex-vivo permeation study revealed 4-folds increase in DXH permeation from DXH-PLGA-CS-NPs after 24 h compared to DXH solution. Intranasal administration of optimized DXH-PLGA-CS-NPs resulted in significantly higher (p < 0.05) Cmax, AUCtotal, t1/2, and MRT in rat brain and plasma than oral DXH solution. Pharmacodynamics investigation revealed that intranasally exploited optimal DXH-PLGA-CS-NPs could be deemed a fruitful horizon for DXH as a treatment for depression.


Chitosan , Depressive Disorder, Major , Nanoparticles , Rats , Animals , Male , Polylactic Acid-Polyglycolic Acid Copolymer , Chitosan/metabolism , Duloxetine Hydrochloride/pharmacology , Rats, Wistar , Drug Carriers/metabolism , Tissue Distribution , Particle Size
3.
Drug Deliv Transl Res ; 12(12): 3083-3103, 2022 12.
Article En | MEDLINE | ID: mdl-35622235

Duloxetine HCl (DXH) is a reuptake inhibitor of serotonin and norepinephrine used to treat the major depressive disorder. Following its extensive hepatic metabolism, acid-labile nature, and limited aqueous solubility, DXH has poor oral bioavailability (40%). The rectal route has been suggested as another route of administration to surmount such challenges. The present study aimed to prepare DXH-loaded glycerosomal (DXH-GLYS) in situ gel for rectal administration to increase DXH permeability and improve its bioavailability. Box-Behnken design (BBD) was adopted to prepare and optimize nanoglycerosomes. The impact of Phospholipon 90G (PL90G), Tween 80 concentrations, and glycerol percentage on encapsulation efficiency, nanoglycerosomal size, % cumulative DXH released, and the cumulative DXH permeated per unit area after 24 h were studied by the design. The pharmacokinetic and pharmacodynamic behavior of optimized formulation was investigated in rats. The formulated DXH-GLYS had a vesicle size ranging between 135.9 and 430.6 nm and an entrapment efficiency between 69.11 and 98.12%. The permeation experiment revealed that the optimized DXH-GLYS in situ gel increased DXH permeation by 2.62-fold compared to DXH solution. Pharmacokinetics studies disclosed that the DXH-GLYS in situ rectal gel exhibited 2.24-times increment in DXH bioavailability relative to oral DXH solution. The pharmacodynamic study revealed that the DXH-GLYS rectal treatment significantly improved the behavioral analysis parameters and was more efficacious as an antidepressant than the oral DXH solution. Collectively, these findings demonstrate that GLYS can be considered a potentially valuable rectal nanocarrier that could boost the DXH efficacy.


Depressive Disorder, Major , Drug Carriers , Animals , Rats , Duloxetine Hydrochloride , Drug Carriers/pharmacokinetics , Gels , Biological Availability , Particle Size , Drug Delivery Systems
4.
J Liposome Res ; 32(4): 365-375, 2022 Dec.
Article En | MEDLINE | ID: mdl-35132919

Curcumin (Cur) is a natural compound that exhibited therapeutic effects against various liver injuries however Cur showed poor water solubility and bioavailability. This study aimed to design Cur-loaded solid lipid nanoparticles (SLNs) and to evaluate the hepatoprotective and antioxidant effects in a model of acute hepatotoxicity induced by paracetamol (PCM) overdose compared to the raw Cur and N-acetylcysteine (NAC). SLNs were prepared by emulsion/solvent evaporation method and 32 factorial design was employed. Wistar rats were divided into Control, PCM, PCM + NAC, PCM + raw Cur, and PCM + Cur-SLNs groups and treated orally for 14 days before receiving a single PCM dose. The Cur-loaded SLNs showed high entrapment efficiency % ranging between 69.1 and 92.1%, particle size (PS) between 217 and 506 nm, and zeta potential values between -17.9 and -25.5 mV. The in vivo results revealed that the PCM group exhibited deterioration of liver functions, pathological lesions on the liver tissues, severe oxidative stress, and increases in both the serum and hepatic iNOS levels. Remarkably, the PCM + Cur-SLNs group showed significantly better liver functions and tissue integrity compared to the PCM group. Furthermore, higher reduced glutathione and catalase but lower malondialdehyde and iNOS levels were observed. In conclusion, Cur-loaded SLNs effectively prevented the liver damage induced by PCM overdose through alleviating the oxidative stress and inhibiting the serum and hepatic iNOS expression in an effect comparable to NAC and better than raw Cur.


Curcumin , Nanoparticles , Animals , Rats , Curcumin/pharmacology , Liposomes , Acetaminophen , Nitric Oxide Synthase Type II , Rats, Wistar , Acetylcysteine
5.
J Liposome Res ; 32(1): 45-61, 2022 Mar.
Article En | MEDLINE | ID: mdl-33353435

Chronic wounds are a serious problem that could cause severe morbidity and even death. The ability of statins including rosuvastatin calcium (RVS) to enhance wound healing was well reported. However, RVS is poorly soluble and has low bioavailability. Thus, this study aimed to prepare and evaluate RVS-loaded nanocubics to enhance its skin performance. In addition, silver nanoparticles (AgNPs) exhibited potent antimicrobial activity, thus, the optimum RVS-loaded nanocubics was capped with AgNPs to evaluate its effect in wound management. Box-Behnken design was adopted to prepare RVS nanocubics. The design investigated the effect of lecithin, poloxamer 407 concentrations and hydration time on vesicle size, zeta potential (ZP), entrapment efficiency (EE%) and in vitro drug release%. Optimum formulation capped with AgNPs was incorporated into a gel base and examined for wound healing efficiency using different pharmacological tests in rats. Nanocubics have shown a mean diameter between 167.2 ± 7.8 and 408 ± 18.4 nm, ZP values ranging from -20.9 ± 1.9 to -53.5 ± 4 mV, EE% equivocated between 31.6 ± 1.4 and 94.4 ± 8.6 and drug release after 12 h between 17.9 ± 1.9 and 68.0 ± 4.0%. The histopathological studies and serum tumour necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß) levels confirmed the greater efficacy of RVS nanocubics capped with AgNPs gel in wound healing when compared with gentamicin ointment. RVS-loaded nanocubic vesicles and AgNPs-loaded hydrogel could be considered as a promising platform to enhance the wound healing and tissue repair processes.


Hydrogels , Metal Nanoparticles , Animals , Hydrogels/pharmacology , Liposomes/pharmacology , Rats , Rosuvastatin Calcium , Silver/pharmacology , Wound Healing
6.
Pharmaceutics ; 13(12)2021 Dec 14.
Article En | MEDLINE | ID: mdl-34959435

Alopecia areata is a scarless, localized hair loss disorder that is typically treated with topical formulations that ultimately only further irritate the condition. Hence, the goal of this study was to develop a nanoemulsion with a base of garlic oil (GO) and apple cider vinegar (APCV) and loaded with minoxidil (MX) in order to enhance drug solubilization and permeation through skin. A distance coordinate exchange quadratic mixture design was used to optimize the proposed nanoemulsion. Span 20 and Tween 20 mixtures were used as the surfactant, and Transcutol was used as the co-surfactant. The developed formulations were characterized for their droplet size, minoxidil steady-state flux (MX Jss) and minimum inhibitory concentration (MIC) against Propionibacterium acnes. The optimized MX-GO-APCV nanoemulsion had a droplet size of 110 nm, MX Jss of 3 µg/cm2 h, and MIC of 0.275 µg/mL. The optimized formulation acquired the highest ex vivo skin permeation parameters compared to MX aqueous dispersion, and varying formulations lacked one or more components of the proposed nanoemulsion. GO and APCV in the optimized formulation had a synergistic, enhancing activity on the MX permeation across the skin membrane, and the percent permeated increased from 12.7% to 41.6%. Finally, the MX-GO-APCV nanoemulsion followed the Korsmeyer-Peppas model of diffusion, and the value of the release exponent (n) obtained for the formulations was found to be 1.0124, implying that the MX permeation followed Super case II transport. These results demonstrate that the MX-GO-APCV nanoemulsion formulation could be useful in promoting MX activity in treating alopecia areata.

7.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 26.
Article En | MEDLINE | ID: mdl-34959627

Pulmonary fibrosis is a serious ailment that may progress to lung remodeling and demolition, where the key participants in its incidence are fibroblasts responding to growth factors and cellular calcium swinging. Calcium channel blockers, like nifedipine (NFD), may represent auspicious agents in pulmonary fibrosis treatment. Unfortunately, NFD bears complicated pharmacodynamics and a diminished systemic bioavailability. Thus, the current study aimed to develop a novel, non-invasive nanoplatform for NFD for direct/effective pulmonary targeting via intratracheal instillation. A modified solvent emulsification-evaporation method was adopted for the fabrication of NFD-nanocomposites, integrating poly(D,L-lactide-co-glycolide) (PLGA), chitosan (CTS), and polyvinyl alcohol, and optimized for different physiochemical properties according to the 32 full factorial design. Additionally, the aerodynamic behavior of the nanocomposites was scrutinized through cascade impaction. Moreover, the pharmacokinetic investigations were conducted in rats. Furthermore, the optimum formulation was tested in bleomycin-induced pulmonary fibrosis in rats, wherein fibrotic and oxidative stress parameters were measured. The optimum nanocomposites disclosed a nanosized spherical morphology (226.46 nm), a high entrapment efficiency (61.81%) and a sustained release profile over 24 h (50.4%). As well, it displayed a boosted in vitro lung deposition performance with a mass median aerodynamic diameter of 1.12 µm. Pharmacokinetic studies manifested snowballed bioavailability of the optimal nanocomposites by 3.68- and 2.36-fold compared to both the oral and intratracheal suspensions, respectively. The intratracheal nanocomposites revealed a significant reduction in lung fibrotic and oxidative stress markers notably analogous to normal control besides repairing abnormality in TGF-ß/ß-catenin pathway. Our results conferred a compelling proof-of-principle that NFD-CTS-PLGA nanocomposites can function as a promising nanoparadigm for pulmonary fibrosis management.

8.
Pharmaceutics ; 13(7)2021 Jul 02.
Article En | MEDLINE | ID: mdl-34371700

Oral health is a key contributor to a person's overall health and well-being. Oral microbiota can pose a serious threat to oral health. Thus, the present study aimed to develop a cinnamon oil (CO)-loaded nanoemulsion gel (NEG1) to enhance the solubilization of oil within the oral cavity, which will enhance its antibacterial, antifungal, and analgesic actions against oral microbiota. For this purpose, the CO-loaded nanoemulsion (CO-NE) was optimized using I-optimal response surface design. A mixture of Pluracare L44 and PlurolOleique CC 497 was used as the surfactant and Capryol was used as the co-surfactant. The optimized CO-NE had a globule size of 92 ± 3 nm, stability index of 95% ± 2%, and a zone of inhibition of 23 ± 1.5 mm. This optimized CO-NE formulation was converted into NEG1 using 2.5% hydroxypropyl cellulose as the gelling agent. The rheological characterizations revealed that the NEG1 formulation exhibited pseudoplastic behavior. The in vitro release of eugenol (the marker molecule for CO) from NEG1 showed an enhanced release compared with that of pure CO. The ex vivo mucosal permeation was found to be highest for NEG1 compared to the aqueous dispersion of CO-NE and pure cinnamon oil. The latency reaction time during the hot-plate test in rats was highest (45 min) for the NEG1 sample at all-time points compared with those of the other tested formulations. The results showed that the CO-NEG formulation could be beneficial in enhancing the actions of CO against oral microbiota, as well as relieving pain and improving overall oral health.

9.
Drug Deliv ; 28(1): 741-751, 2021 Dec.
Article En | MEDLINE | ID: mdl-33840320

The majority of newly developed drugs need to be incorporated with delivery systems to maximize their effect and minimize side effects. Nanoemulsions (NEs) are one type of delivery system that helps to improve the solubility and dissolution of drugs, attempting to enhance their bioavailability and onset of action. The objective of this investigation was to develop an omega-3 oil-based NE loaded with loxoprofen (LXP) to enhance its dissolution, in vitro release, and mucosal penetration and decrease its mucosal ulcerative effects when applied in an oral treatment. LXP-loaded NEs were formulated with varying levels of omega-3 oil (10-30%), surfactant polyoxyethylene-C21-ethers (laureth-21) (40-60%), and co-surfactant polyethylene glycol-40 hydrogenated castor oil (HCO-40) (30-50%) using an extreme vertices mixture design. The developed NEs were characterized for globule size and drug loading capacity. The optimal formulation was tested for in vitro drug release, ex vivo permeation, and ulcer index value. The developed NE acquired a globule size ranging 71-195 nm and drug loading capacity of 43-87%. Considering the results of the in vitro release study, the optimized NE formulation achieved 2.45-fold and 2-fold increases in drug permeation across tested mucosa compared to a marketed tablet and drug aqueous dispersion, respectively. Moreover, the optimum NE exhibited the best ulcer index in comparison to drug aqueous suspension and different formulations when tested in rats. Overall, this research highlights the capacity of NEs to deliver LXP with enhanced solubility, drug release, and permeation while effectively protecting the application site from side effects of the model drug.


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Fatty Acids, Omega-3/chemistry , Nanoparticles/chemistry , Phenylpropionates/pharmacology , Toothache/drug therapy , Administration, Topical , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Chemistry, Pharmaceutical , Drug Delivery Systems , Drug Liberation , Emulsions/chemistry , Male , Phenylpropionates/administration & dosage , Phenylpropionates/adverse effects , Phenylpropionates/pharmacokinetics , Rats , Sheep , Skin Absorption/physiology , Solubility , Surface-Active Agents
10.
Pharmaceutics ; 12(11)2020 Nov 07.
Article En | MEDLINE | ID: mdl-33171816

Burn wound healing is a complex process that involves the repair of injured tissues and the control of infection to diminish the scar formation, pain, and discomfort associated with such injuries. The aim of this research was to formulate and optimize a self-nanoemulsion drug delivery system based on the use of coconut oil and loaded with simvastatin. Coconut oil possesses antiinflammatory and antibacterial activity, and simvastatin has interesting properties for promoting the wound-healing process because it increases the production of the vascular endothelial growth factor at the site of injury. The Box-Behnken design was employed for the optimization of the coconut oil-simvastatin self-nanoemulsion drug delivery system. The prepared formulations were characterized according to globular size and their activity in the healing of burn wounds by assessing the mean wound diameter and level of interlukin-6 in experimental animals. Additionally, the antimicrobial activity of the prepared formulations was assessed. The nanoemulsion was considered adequately formed when it had droplets of between 65 and 195 nm. The statistical design proved the important synergistic effect of coconut oil and simvastatin for burn wound management in their synergistic potentiation of wound closure and their anti-inflammatory and antimicrobial effects. The optimum formulation achieved up to a 5.3-fold decrease in the mean burn wound diameter, a 4.25-fold decrease in interleukin-6 levels, and a 6-fold increase in the inhibition zone against Staphylococcus aureus when compared with different control formulations. Therefore, the designed nanoemulsions containing a combination of coconut oil and simvastatin could be considered promising platforms for the treatment of chronic and burn wounds.

11.
Pharmaceutics ; 12(3)2020 Mar 13.
Article En | MEDLINE | ID: mdl-32183144

The objective of this study was to develop an optimized sustained-release nanotransfersomes (NTS) based in situ gel formulation of rosuvastatin (RO) combined with ellagic acid (EA) antioxidant, to enhance cytotoxic and anti-proliferative activity against tongue carcinoma. The concentrations of lecithin, Tween 80, and d-tocopherol polyethylene glycol succinate (TPGS) were considered as independent variables. Particle size, entrapment, and stability were selected as dependent variables. The obtained formulation containing 25% lecithin, 20% Tween 80, and TPGS 15% fulfilled the prerequisites of the optimum formulation. RO-NTS loaded in situ gel was prepared and optimized for concentrations of Poloxamer 407, and Carbopol, using statistical design. Drug release from in situ gel showed a sustained release profile. The RO IC50 was decreased by half for the in situ gel in comparison to plain RO and RO-EA-NTS. A significant amount of caspase-3 was detected in all the formulation treatments. The studies indicated that EA's synergistic anti-oxidant effect owing to a high affinity to the PGP efflux transporter and higher penetration in the RO-NTS formulation led to a higher inhibition against human chondrosarcome-3 cancer cell lines. RO-EA NTS-loaded in situ gel had a sustained release that could be significant in localized therapy as an alternative to surgery in the treatment of aggressive tongue carcinoma.

12.
Drug Deliv Transl Res ; 10(1): 227-240, 2020 02.
Article En | MEDLINE | ID: mdl-31625026

Poor bioavailability of drugs via oral route is the greatest challenge facing drug formulation. To overcome this obstacle, transdermal route was commonly used as an alternative route to improve bioavailability. Lercanidipine HCl (LER) is a vasoselective calcium-channel blocker that has a poor oral bioavailability of 10% due to its hepatic metabolism and low solubility. The main objective of this study was to develop nanoethosomal LER gel for transdermal delivery to increase its skin permeation and promote bioavailability. Nanoethosomes were prepared and optimized using a Box-Behnken design employing ethanol injection method. The design studied the influence of Phospholipon 90G (PL90G), LER, and ethanol concentrations on entrapment efficiency (EE%); vesicle size; % cumulative LER release (CLERR); and cumulative LER permeated per unit area at 24 h Q24 (µg/cm2). The pharmacokinetic parameters of the optimized formulation were determined in rats. Nanoethosomes showed a mean vesicle size between 210.87 and 400.57 nm and EE% ranging from 49.26 to 97.22%. The developed nanoethosomes enhanced % CLERR and Q24 values compared to drug suspension. The experimental parameters of optimized formulation were very close to those calculated by software. The pharmacokinetics study showed three times statistically significant (p < 0.05) enhancement in LER bioavailability following nanoethosomal LER gel transdermal application compared to that of oral LER suspension. Nanoethosomes can be considered as a promising carrier for LER transdermal delivery, thus will be fruitful therapy in hypertension management. Graphical abstract.


Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacokinetics , Dihydropyridines/administration & dosage , Dihydropyridines/pharmacokinetics , Administration, Cutaneous , Animals , Antihypertensive Agents/chemistry , Biological Availability , Dihydropyridines/chemistry , Ethanol/chemistry , Gels , Male , Models, Animal , Nanoparticles , Particle Size , Phosphatidylcholines/chemistry , Rats
13.
J Liposome Res ; 30(2): 163-173, 2020 Jun.
Article En | MEDLINE | ID: mdl-31039651

Olanzapine (OL) is an atypical antipsychotic drug which suffers from an extensive hepatic metabolism and poor bioavailability. In addition, it has low brain permeability due to efflux by P-glycoproteins. In the current investigation, surface modified niosomes containing OL were prepared for brain targeting of the drug through nasal route. Spans were mixed with cholesterol at ratios of 1:1, 1:2, 1:3, and 1:4 of cholesterol to surfactant, respectively to prepare niosomes. Chitosan (CS) coated vesicles were prepared by mixing optimum niosomal formula with CS solution (0.6%). Physicochemical and stability parameters and confocal laser scanning microscopy (CLSM) of developed vesicles were determined. Also, the brain targeting properties of the optimized formula were measured in rats. Niosomes had entrapment efficiency more than 90% and particle size ranging from 201.3 ± 2.4 nm to 1446 ± 9 nm. TEM photomicrographs of developed vesicles showed a clear shell surrounding the coated vesicles. The produced vesicles exhibited 2.46 folds increase in the amount of drug that permeated nasal mucosa and prolonged OL release compared to drug solution. Coated niosomes further improved drug permeation. CLSM of coated optimum formula showed high permeation across the nasal mucosa. Stability studies revealed non-significant changes in the physicochemical parameters of optimum formula over the storage period. The optimized nasal CS-coated niosomes showed a three-fold increase in OL concentration in the brain compared to the intranasal solution of the drug. In conclusion, the developed vesicles were efficient in nasal delivery of OL into the brain.


Antipsychotic Agents/pharmacology , Brain/metabolism , Olanzapine/pharmacology , Administration, Intranasal , Animals , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/chemistry , Brain/pathology , Dose-Response Relationship, Drug , Drug Carriers/administration & dosage , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Delivery Systems , Liposomes/administration & dosage , Liposomes/chemical synthesis , Liposomes/chemistry , Male , Molecular Structure , Olanzapine/administration & dosage , Olanzapine/chemistry , Particle Size , Rats , Structure-Activity Relationship , Surface Properties , Viscosity
15.
AAPS PharmSciTech ; 20(7): 297, 2019 Aug 23.
Article En | MEDLINE | ID: mdl-31444661

Miconazole nitrate (MZ) is a BCS class II antifungal poorly water-soluble drug with limited dissolution properties and gastrointestinal side effects. Self-nanoemulsifying delivery system-based gel of MZ can improve both solubility and oral mucosal absorption with enhanced antifungal activity. The study aims to formulate MZ self-nanoemulsion (MZ-NE) and combine it within hyaluronic acid-based gel. MZ solubility in various oils, surfactants, and cosurfactant used in NE formulations were evaluated. Mixture design was implemented to optimize the levels of NE components as a formulation variable to study their effects on the mean globule size and antifungal inhibition zones. Further, the optimized MZ-NE was loaded into a hyaluronic acid gel base. Rheological behavior of the prepared gel was assessed. Ex vivo permeability of optimized formulation across buccal mucous of sheep and inhibition against Candida albicans were examined. Mixture design was used to optimize the composition of MZ-NE formulation as 22, 67, and 10% for clove oil, Labrasol, and propylene glycol, respectively. The optimized formulation indicated globule size of 113 nm with 29 mm inhibition zone. Pseudoplastic flow with thixotropic behavior was observed, which is desirable for oral gels. The optimized formulation exhibited higher ex vivo skin permeability and enhanced antifungal activity by 1.85 and 2.179, respectively, compared to MZ-SNEDDS, and by 1.52 and 1.72 folds, respectively, compared to marketed gel. Optimized MZ-NE hyaluronic acid-based oral gel demonstrated better antifungal activity, indicating its potential in oral thrush pharmacotherapy.


Antifungal Agents/administration & dosage , Candidiasis, Oral/drug therapy , Chemistry, Pharmaceutical/methods , Hyaluronic Acid/administration & dosage , Miconazole/administration & dosage , Nanocapsules/administration & dosage , Administration, Oral , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacokinetics , Candidiasis, Oral/metabolism , Drug Delivery Systems/methods , Drug Evaluation, Preclinical/methods , Emulsions/administration & dosage , Emulsions/chemical synthesis , Emulsions/pharmacokinetics , Hyaluronic Acid/chemical synthesis , Hyaluronic Acid/pharmacokinetics , Hydrogels/administration & dosage , Hydrogels/chemical synthesis , Hydrogels/pharmacokinetics , Miconazole/chemical synthesis , Miconazole/pharmacokinetics , Nanocapsules/chemistry , Sheep
16.
Drug Des Devel Ther ; 12: 3501-3516, 2018.
Article En | MEDLINE | ID: mdl-30410310

OBJECTIVE: One of the greatest challenges drug formulation is facing is poor bioavailability via oral route. In this regard, nasal drug delivery has been commonly used as an alternative route to improve drug bioavailability. Nefopam hydrochloride (NF) is an analgesic drug that suffers from poor bioavailability due to extensive metabolism in liver. Accordingly, the goal of the present study was to improve NF bioavailability via niosomal-based formulation designed for intranasal delivery. MATERIALS AND METHODS: Vesicles were developed by mixing surfactants (Span 20, Span 40, Span 80, and Span 85) at four molar ratios of 1:1, 1:2, 1:3, and 1:4 of cholesterol to surfactant. Entrapment efficiency, particle size, zeta potential, release percentage, ex-vivo permeation parameters, and niosomes' stability were determined. Also, the pharmacokinetic parameters of the optimized formula in in-situ gel base were measured in rats. RESULTS: Niosomes showed entrapment efficiency .80%, particle size ,550 nm, and zeta potential ranging from -16.8±0.13 to -29.7±0.15. The produced vesicles showed significantly higher amounts of drug permeated across nasal mucosa (2.5 folds) and prolonged NF release compared with NF solution. Stability studies of optimum formula showed nonsignificant changes in niosomes parameters over a storage period of 6 months. The in-vivo studies showed a 4.77-fold increase in bioavailability of optimized nasal niosomes compared with oral solution of drug. CONCLUSION: The obtained results revealed the great ability of the produced NF-loaded nio-somes to enhance drug penetration through nasal mucosa and improve its relative bioavailability compared with NF oral solution.


Drug Delivery Systems , Nefopam/administration & dosage , Nefopam/pharmacokinetics , Administration, Intranasal , Animals , Biological Availability , Cholesterol/administration & dosage , Cholesterol/chemistry , Female , Liposomes , Male , Nefopam/metabolism , Particle Size , Rats , Rats, Wistar , Surface-Active Agents/administration & dosage , Surface-Active Agents/chemistry
17.
Pharm Dev Technol ; 22(3): 409-417, 2017 May.
Article En | MEDLINE | ID: mdl-27476543

Eradication of ophthalmic infections depends on increasing transcorneal permeation and localizing antibiotics at ocular surface. This study aimed at formulating lomefloxacin HCl (LF) in the form of niosomes and evaluating the in vivo performance of best formula in rabbits' eyes. Vesicles were developed by mixing three surfactants at three molar ratios of 1:1, 1:2 and 1:3 of surfactant to cholesterol. Size, zeta potential, release percentage, transcorneal permeation parameters, stability studies, cytotoxicity and antibacterial activity of niosomes were determined. Niosomes showed encapsulation efficiency of more than 78%, particle size below 500 nm and zeta potential below -43.6. The produced vesicles showed significantly higher amounts of drug permeated across cornea (166%) compared to LF solution. The in vivo study showed 2-5 folds increase in drug concentration in ocular fluids and tissues following administration of niosomes compared to marketed formula (from 3.75 to 10.31 mcg/mL in the cornea). Microbiological studies showed 35 folds increase in the antibacterial activity of LF niosomes compared to free drug; where MBC decreased from 31.25 mcg/mL in case of LF solution to 0.97 mcg/mL for niosomal gel. The formulated niosomes enhanced the ocular bioavailability of LF through increasing transcorneal permeation and localizing drug at site of action.


Anti-Bacterial Agents/administration & dosage , Cornea/metabolism , Drug Compounding/methods , Fluoroquinolones/administration & dosage , Gels/chemistry , Surface-Active Agents/chemistry , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Biological Availability , Cattle , Cornea/drug effects , Diffusion Chambers, Culture , Drug Stability , Escherichia coli/drug effects , Fluoroquinolones/adverse effects , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/pharmacology , In Vitro Techniques , Liposomes , Microbial Sensitivity Tests , Particle Size , Permeability , Rabbits , Tissue Distribution
18.
Drug Deliv ; 23(9): 3452-3460, 2016 Nov.
Article En | MEDLINE | ID: mdl-27240935

CONTEXT: The effective treatment of skin carcinoma is warranted for targeting the chemotherapeutic agents into tumor cells and avoiding unwanted systemic absorption. OBJECTIVE: This work was dedicated to the purpose of engineering highly penetrating shell-enriched nanoparticles that were loaded with a hydrophilic chemotherapeutic agent, 5-fluorouracil (5-FU). METHODS: Varying ratios of lecithin and poloxamer188 were used to produce shell-enriched nanoparticles by enabling the formation of reversed micelles within this region of the SLN. The localization of 5-FU within the shell region of the SLN, was confirmed using 5-FU nanogold particles as a tracer. SLN were introduced within sodium carboxy methylcellulose hydrogel, and then applied onto the skin of mice-bearing Ehrlich's ascites carcinoma. The mice were treated with the gel twice daily for 6 weeks. RESULTS: The transmission electron microscope (TEM) revealed the formation of uniform nanoparticles, which captured reversed micelles within their shell region. The SLNs' had particle size that ranged from 137 ± 5.5 nm to 800 ± 53.6, zeta potential of -19.70 ± 0.40 mV and entrapment efficiency of 47.92 ± 2.34%. The diffusion of the drug-loaded SLN (269.37 ± 10.92 µg/cm2) was doubled when compared with the free drug (122 ± 3.09 µg/cm2) when both diffused through a hydrophobic membrane. SLN-treated mice exhibited reduced inflammatory reactions, with reduced degrees of keratosis, in addition to reduced symptoms of angiogenesis compared to 5-FU-treated mice. CONCLUSION: SLN possesses the capacity to be manipulated to entrap and release hydrophilic antitumor drugs with ease.


Antineoplastic Agents/chemistry , Carcinoma/drug therapy , Fluorouracil/administration & dosage , Fluorouracil/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Diffusion , Drug Carriers/chemistry , Drug Delivery Systems , Male , Mice , Mice, Inbred BALB C , Micelles , Nanoparticles/administration & dosage , Particle Size , Skin/drug effects , Skin Absorption
...